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Abstract. The general expression for the local matrix of a quantum cliaéh with the site

space in any representation 8f)3) is obtained. This is made by generaliziigd) from

the fundamental representation and imposing the fulfilment of the Yang—Baxter equation. With
these operators and using a generalization of the nested Bethe ansatz, the Bethe equations for a
multistate quantum chain combining two arbitrary representatior®Jo8) are obtained.

In the study of integrable quantum systems, chains combining two kinds of spin have
aroused great interest lately. The work was pioneeredfd®) algebra by de Vega and
Woynarovich [1]. In this paper a chain-mixing site with séirand 1 and periodic boundary
conditions was studied, and the generalization to a chain—combining%sapmd any othes
was suggested. Several subsequent works have been published in which the thermodynamic
properties of these systems are studied [2-5].

In this paper, we study an alternating chain, the site states of which are a mixture
of any two representations @U3). We made an initial approach to this problem in a
previous paper [6], where we solved an alternating chain mixture of the two fundamental
representations ddU(3) and presented a method, a modification of the nested Bethe ansatz
(MNBA), needed to find the Bethe equation (BE) solutions of the problem. The process was
as follows. First we sought the general form of the local operaten with its auxiliary
space in the fundamental representation [7—10] and the site space in any representation of
SU3). This is done by departing from a general form inspired by the local opetator
with the auxiliary and site space in the fundamental representati&u@) and by making
that operator the YBE solution. The operator so obtained has several free parameters that
are coming from the symmetries of the YBE. With this operator we can form integrable
homogeneous chains and find the ansatz equations with usual nested Bethe ansatz (NBA)
[11,12]. Secondly, alternating chains are formed by mixing any two representations of
SU(3) and the solutions are formed by applying MNBA [6]. From the results so obtained
we can conjecture the BE for chains based on the alggbka).

We denote a representation by the indices of its associated Dynkin diagram,),
wherem; andm, correspond to th¢3} and{3} representations respectively. In the figures,
a continuous line was used for the fundamental representétid® and a wavy line for
any other representation. Thus, the operaloi) are denoted as indicated in figure 1 and,
in order to simplify the writing of the formulae, we will adopt the following identifications:
L©®) = LEOE0 @9y and L' () = LLOmm2) (g),
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Figure 1.
The operatoiL () can be written [6]
30347 — 173%™ KGOy A0 o, ]
Lo = |  aMRe (03N —agY) a0 &)
M er, 5] A, 13N =%

where the parametedsandg have been taken as the functionsfoénd y
A =é"72 g=¢€" )

and theN matrices are
N*=2hy+ ho+ 31 (3a)
NP = —2hi+ Sho+ 31 (3b)
N = —1hy—2py 4+ 11 (3c)

where({e; fig*™"}, i =1, 2 the Cartan generators of the deformed algdiyeSL(3)).
To obtain the operators’(x) with the new parameters given in (2), we take (1) as a
basis and write

F(A3gV — 173" AFy A1F;
L'o) = WLE 337N — 173N AP @)
LE3 ALE, 3™ — a3V
where the operatorsE;, F;}, i = 1, 3 are unknown and will be determined by imposing the
YBE
RO/WIL' () ® L'(w)] = [L' (1) ® L'(M]R(A/ 1) (5)
as shown in figure 2. Th&%4(0) = [L,,(0)]..q is given [10]
a 00 OO O0OOTG O 0\
04 0b OO O OO
0 Oc OO Ob» 0O
0Obb 0O c OO O OO
Ro,wy=|0 0 0 0a 0 00O (6)
0 00O 0Od 0 b O
0O 0b OO0 Od4d 0O
0 00O O0Ob O ¢ O
0O OO0 OO O 0 Oa
with
ah, ) = W33t = 173u3q) (72)

b, ) = (3> =270 (7b)
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Figure 2.

cOnp) =3 =g (70)
dv, ) = 3 —r . (7d)

The relations obtained are
Exq" =q7'¢" Ey (82)
Eiq"" = qq"" E; (8b)
Fig™" =qq"" Py (80)
Fig" = ¢4V R (8d)
Exq"" =qq"' E, (8¢)
Exq™' =q7'¢""E; (8)
Foq" =q7¢"'F, (89)
Foq"" = qq"" F, (8h)
[E1 Fil = (@7 = )@V~ — ") (8i)
[E2. F2l = (7t = )@V ™" = ¢V ") (8))
1
Es=——+——q “'[Ey, Ej] (8K)
(¢g*—q)
1 NE
Fs= _—————q" [F2, Fi] (81
g*—q)
and besides, the modified Serre relations

q YE1E1E; — (@ + q DE1E2E1 + qE2E1E1 =0 (%)
qE2E2E1— (g + q YE2E1E2 + q 'E1E2Ep =0 (%)
¢ FiF1F; — (g + ¢ Y F1IF2FL+ qF2FiFr = 0 (%)
qF2FaFL— (g + ¢ YFFiF, + ¢ FiFF, = 0 (d)

should be verified.

It must be noted that the relations (8) are the usual ones for the quantum group
U, (SL(3)) while the relations (9) are not the usual ones for the said group and because of
this the EYB is not verified if the generatogsand f;, pertaining to deformed algebra, are
taken asE; and F;. This induces us to take

Fi=3q'—q)Zf; (10a)
E; = %(f]_l — ezt i=12 (100)
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wheree; and f;, i = 1,2 are the generators &f,(SL(3)) in the representatiofn, my)
and Z; are two diagonal operators that were obtained by imposing the verification of the
relations (8) and (9). In this way, one obtains the general form of these operators given by

Zl — qalhl—%hz-kagl (11&)
Zo = q3h1+(a1+ 3)ha+bsl (1:”3)
where the operatork;, i = 1, 2 are the diagonal elements of the algeBia3), anday, a3

and b are free parameters that are associated with the transformations that leave the EYB
invariant.

The knowledge of the operatdr permits us to find the ansatz of any multistate chain
that mixes various representations. For this purpose, the monodromy operator corresponding
to the chain to be solved is built; as an example we will use the one which alternates the
representationgl, 0) and (mq, m>)

Ta(fllt)(@) _ L(l) (Q)L/(Z) (0) L(2N 1) (Q)L/(ZN) (9) (12)

a,ay ay,az AN —2,A2N-1 Aa2N-1,b

that can be represented graphically as shown in figure 3.

2N-1 2N

wondddd A
IR I

Figure 3.

Using the MNBA [6, 13] the ansatz for the chain can be found. To particularize to each
case it is necessary to know the action of the diagonal operﬁ;t’gﬁ‘rsan the vacuum state
if the chain is homogeneous or on the vacuum subspace if it is an alternating chain [6]. In
both cases, it is always characterized by the highest weight of the representation. Thus, for
the representatiotm, m») it will be
2mq1 + my mi + 2m;

A, =
h 3 o1+ 3

wherewa; anda, are the simple roots ddU(3).
Through (4), (&) and (13), together with the commutation rulesStk3) it was possible
to know the action of’; ;(9) on the highest weight, obtaining

ar (13)

Ly 10 A, =sinh30 + Gmy+ Sma+ 3y Ay (14a)
Ly ,(0) Ay = SINN30 + (= 3my + Ima+ Dy)A, (14b)
Ly 30) Ay = sinh(30 + (—=2m1 — Zma + Dy) Ay (14c)

It is also applicable for obtaining the action of the operatbrs(®) on the corresponding
highest-weight state taking; = 1 andm, = 0. In this way, in the alternate chain that
mixes N representationgl, 0) with N representationgn;, m»), the BE are given by

[g (ol (gm0l = Hiﬁk ]_[g(k 14) (154)
J

J#k
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. (xi —
[22000]" = 1‘[g<xk W) 1‘[ g G (150)
l;ﬁk
wherep;, i =1,...,r andi;, j =1,...,s the roots of the ansatz, the functignis
sinh(26 + y)
gO) = —2 "= (16)
sinh(30)
andg1(0) and g»(9) are obtained from (14) giving
y sinh(30 + Zma + Ima+ Yy)
aO) =23 -3 =3 (17a)
SiNh(36 + (—3m1 + 3m2 + 3)y)
) sSin(30 + (=3m1 — 2ma + Lyy)
2200) = . (170)

SiNh(360 + (—3m1+ jm2+ 3)y)

The procedure can be generalized to chains that mix non-fundamental representations,
irrespective of the number of sites and their distribution in the representations. For this
purpose, it is necessary to build the monodromy matrix following an analogous process to
that used in (12). If we use a broken line for the representdiignm,), the monodromy
matrix 7€ (@) can be represented graphically as shown in figure 4.

Figure 4.

The eigenvalues for the local operators on the highest-weight states, in straightforward
notation are

111(0) = sinh(30 + (3m1 + sma + 3)y) (183)
152(0) = sinh(30 + (—3my + Fma+ Dy) (180)
I33(0) = sinh(30 + (—3m1 — Sma+ 3)y) (1&)
I11(0) = sinh(36 + (Zmy + tmy + L)y) (18d)
l22(0) = siNh(30 + (—imy + 3mb + 3)y) (189
I33(0) = sin(30 + (—3m) — 3mb + Dy). (18f)

By calling the number of sites in the representatiamg, m») and (my, m5,)N, and N,
respectively, we found the eigenvalue of the transfer matrix for this general chain

A®) = [La@]" @] [ [ e — 6)
j=1

+]]e0 - u,-)[[l’z,zw)]Nl[iz.z(e)]Nz [Jei—0)
j=1 i=1

s Taso o T ]‘[g(a A)] (19)
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and the BE are

[glwk)]Nl[gl(uk)]NZ— 8k = y) Hg(x i) (208)
18 — Mk)
J#k
A
[gzak)]m[gz(xkn”z—l"[gak ) 1‘[% (200)
i= z;ék

whereg; and g, are given in (18,b) and g, and g, are the same as the previous ones but
(m1, my) is replaced bym|, m5).

In the light of this, the generalization for the case of mixed chains with more than two
different representations seems simple, although the physical models that they represent will
be less local and the interaction more complex.

In a non-homogeneous chain combining different representationSUgt), each
representation introducdg — 1) functions (that we call source functions). Each solution
will have (n — 1) sets of equations (with the same number of dots in its Dynkin diagram).
The first member of the equations will be a product of the respective source functions
powered to the number of sites of each representation and the second a product of source
functions similar to (20).
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careful reading of the manuscript by Professor J Sesma is also acknowledged. This work
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